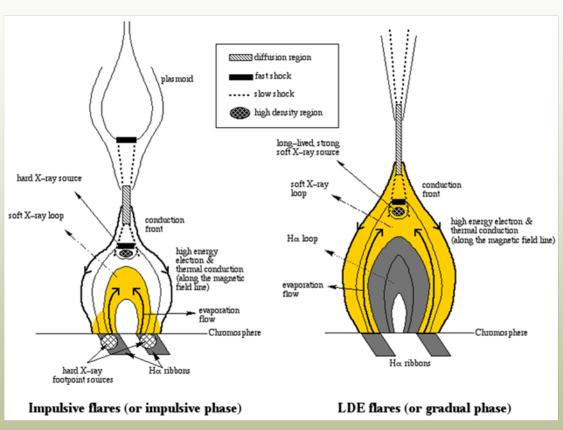


Hinode and RHESSI Observations of the GOES B9.5 Flare of 19th May, 2007

J. L. Culhane¹, L. A. Bone¹, H. Hara², L. Van Driel-Gesztelyi¹, A. Veronig³

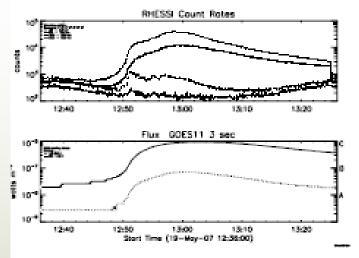
1. University College London, Mullard Space Science Laboratory

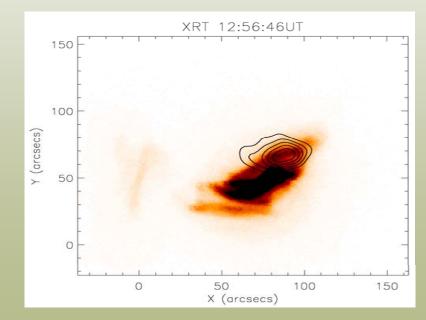

2. National Astronomical Observatory of Japan

3. Kanzelhoehe Solar Observatory, University of Graz

Introduction

- Flares that have long lifetimes and cusp apexes have been observed extensively with Yohkoh
- Cusp structure is taken to be a signature of CSHKP model
- For long duration events soft X-ray emission persists well after initial phase and decays slowly

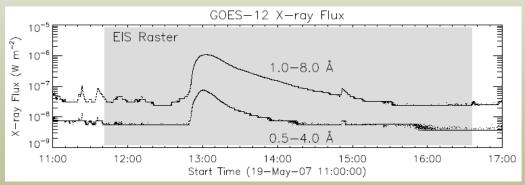



From Grand Archive of Flare and CME Cartoons (Hudson)

UC

Flare - 19 May 2007

- GOES class B9.5 – 12:48 UT start; 13:02 UT peak
- RHESSI observations to E_{max} ~ 15 keV – visible for ~ 60 minutes
- RHESSI temperature initially 22 MK – decays to ~ 15 MK in ~ 40 minutes
- Emission measure ~ 10⁴⁶ cm⁻³ and volume ~ 3.10²⁷ cm³
- Little or no impulsive behaviour
 - very small spike at 12:51 UT; $E_{NT} \ll E_{Th}$



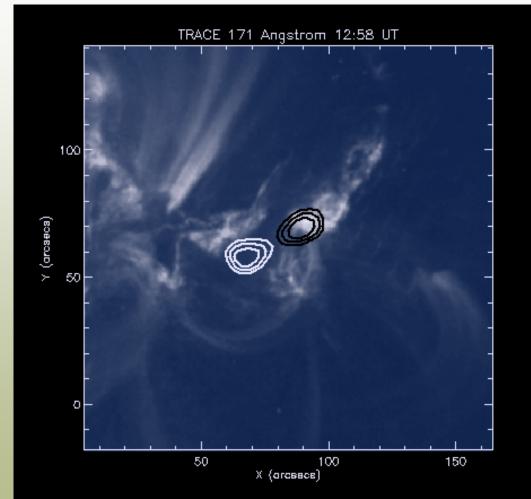
STEREO SWG Meeting

Flare - 19 May 2007

- Long duration flare with steep thermal hard X-ray spectrum
- Hinode/EIS was rastering the loop-top region for the rise and peak of the flare
- EIS study used 21 emission lines ranging from:
 - He II (Log $T_{max} = 4.7$) to - Fe XXIV (Log $T_{max} = 7.2$)

GOES X-ray Flux

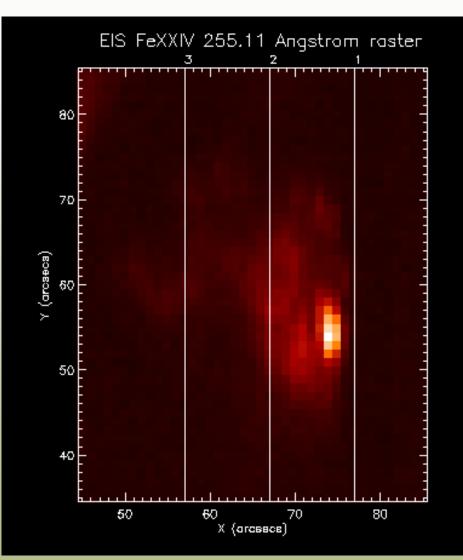
TRACE 171 Å Response: Log T ≈ 5.8 - 6.2 or 0.7 – 1.6 MK


Len Culhane 22nd April, 2008

STEREO SWG Meeting

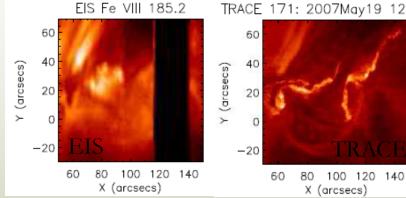
TRACE Image and RHESSI Source Evolution

- TRACE 171 Å image at 12:58 UT
- RHESSI 6 12 KeV images are shown as contours
 - white at 12:51 UT
 - black at 13:01 UT
- XRT and TRACE images show a short arcade of loops across the filament channel
- RHESSI source location moves along the arcade

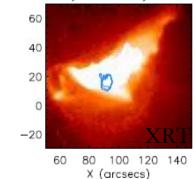


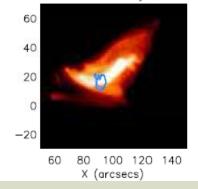
EIS Flare Region Raster Image in Fe XXIV 255 Å

- EIS raster used: 1" slit 330 exposures 40s exposure time 1" step size
- Times for indicated raster positions are:

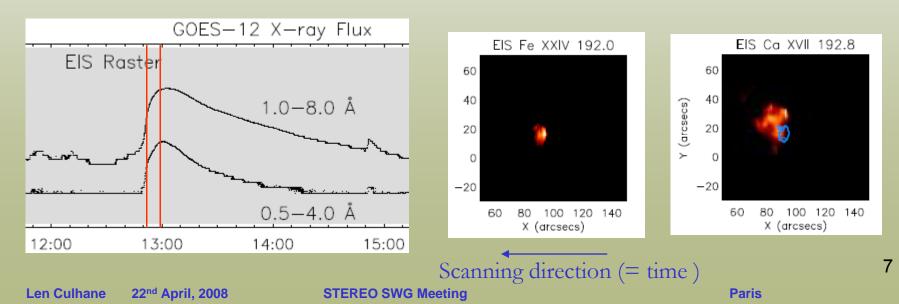

 $\begin{array}{c} 1 \rightarrow 12:45:38 \text{ UT} \\ 2 \rightarrow 12:54:34 \text{ UT} \\ 3 \rightarrow 13:03:29 \text{ UT} \\ \text{- flare start time } 12:48 \text{ UT} \end{array}$

 Fe XXIV emission is from a compact region above the cooler flare plasma loops

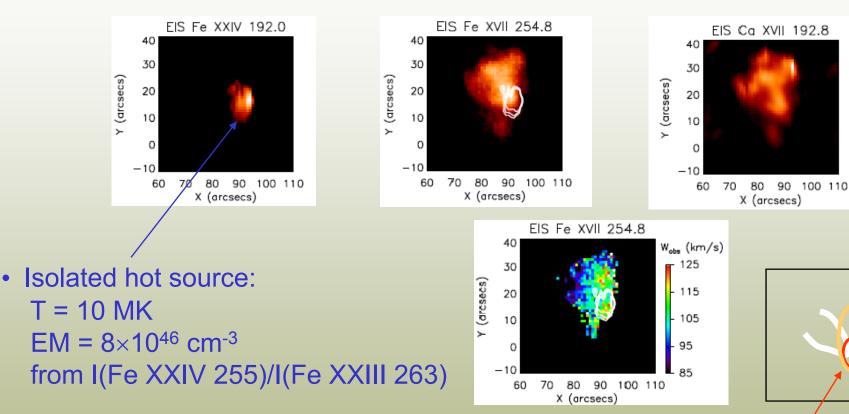




EIS Spectroscopic Observations



TRACE 171: 2007May19 12:52 UT XRT Ti_Poly: 2007May19 12:53 UT XRT Al_thick: 2007May19 12:54 UT


10 MK source found above the flare loop top

EIS Spectroscopic Observations

10MK source above Ca XVII loop

- Source has enhanced nonthermal velocity component estimated from the broadened line as ξ = 60-130 km/s
- Location of enhanced nonthermal velocity region is identified Len Culhane 22nd April, 2008 STEREO SWG Meeting Paris

Cooling Processes

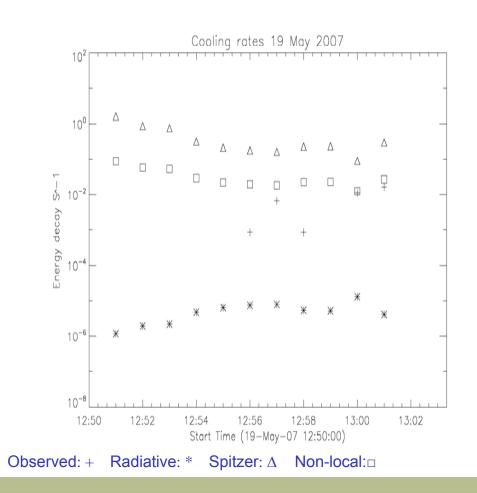
Radiative cooling

$$E_{rad} = \kappa_r n_e^2 T^{-\frac{1}{2}}$$
 $\kappa = 1.42 \times 10^{-19} \text{ ergs cm}^3 \text{ sec}^{-1} K^{-\frac{1}{2}}$

Spitzer conductive cooling

$$E_{spit} = \frac{\kappa_s T^{\frac{7}{2}}}{L} \qquad \kappa = 1.0 \times 10^{-6} \text{ ergs cm}^3 \text{ sec}^{-1} K^{-\frac{7}{2}}$$

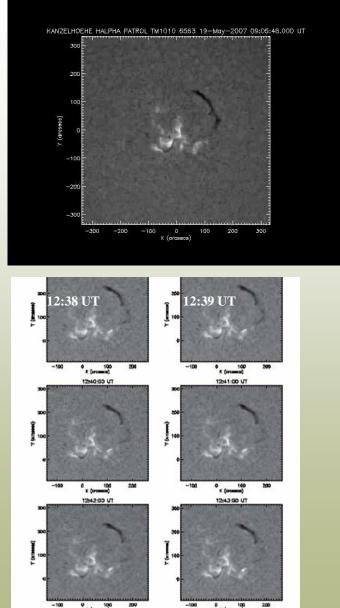
Non-local conductive cooling


$$\tau_{nl}^{-1} = 0.11 \frac{\lambda}{L} \tau_{spit}^{-1}$$

where λ is the mean free path for thermal electrons

Cooling Rates – 19 May

- RHESSI source has higher
 T_e value (≈ 20 MK) than
 EIS source and ≈ x10
 lower emission measure
- RHESSI shows an initial energy increase then the thermal energy decays
- Decay rate converges toward the non-local conduction rate



Flare Plasma Heating

- Little or no impulsive non-thermal component
- In thick target model, non-thermal electrons heat and ablate the plasma
- Here flare plasma not heated by electron beam energy
- Dissipation of magnetic energy in slow shocks near reconnection site would dump around 10³¹ ergs into corona (Cargill and Priest, 1982)
 - sufficient to heat the RHESSI sources; total energy $\sim 1 3 \times 10^{30}$ erg
- V_{NT} component observed by EIS due to shock turbulence

STEREO SWG Meeting

UCL

22nd April, 2008

Evolution of Filament Eruption

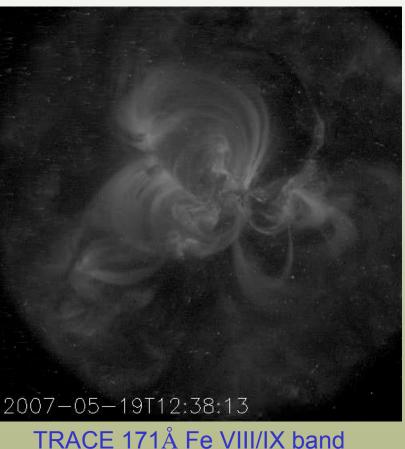
Southern filament extension: Modulated \rightarrow 12:05 UT to 12:16 UT Splitting of filament: Begins \rightarrow 12:20 UT

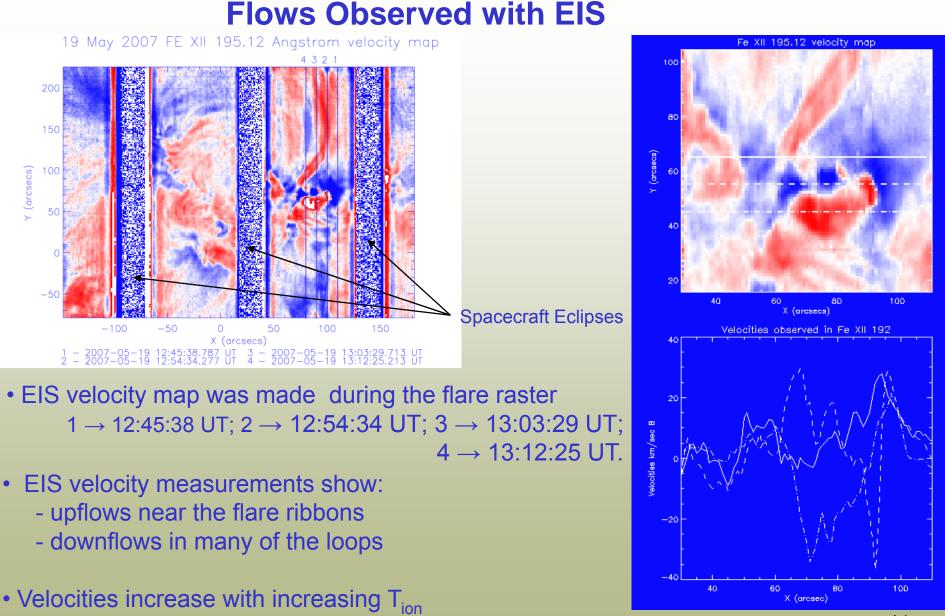
Lower filament disappearance: Starts \rightarrow 12:30 UT Ends \rightarrow 12:45 UT Upper filament disappearance: Starts \rightarrow 12:43 UT Ends \rightarrow 12:57 UT

First H α brightening at flare core \rightarrow 12:46 UT

Both Ha ribbons start \rightarrow 12:49 UT

Main RHESSI/Goes flare start \rightarrow 12:51 UT


CME seen in SOHO C2 \rightarrow 13:24 UT Launch at \approx 12:44 UT with v = 958 km/s


Len Culhane

UCL

TRACE and Kanzelhoehe Hα Observations TRACE 171 A movie shows the Hα filament material being heated in the process of eruption

- Start of movie at 12:38 UT is part-way through the lower filament disappearance
- Lower filament heats to T ≈ 1 MK during eruption from 12:30 UT to 12:45 UT
- Heating of upper filament likewise seen from 12:43 UT to 12:57 UT

STEREO SWG Meeting

14

Conclusions

- Long duration flare observed with RHESSI and Hinode and also with STEREO, TRACE and SOHO on 19 May, 2007
 – conductive cooling converges to non-local conduction rate
- Flare shows no evidence for non-thermal particles
 - no footpoint emission or Hard X-Rays
 - need to find other ways to heat source e.g. shocks
- Turbulent broadening (v_{nt} ≈ 60 130 km/s) seen in Fe XXIV line at top of cusp; RHESSI source located higher up?
 - broadened lines emitted by the slow shock region?
 - slow shock heating possible for flares in weak magnetic field

• Filament material heated before/during eruption

STEREO SWG Meeting

END OF TALK

Len Culhane 22nd April, 2008

STEREO SWG Meeting

Paris