On the reconstruction of the electron density

structures in the corona from 1.5 to 4 Rsun

M.Kramar¹, S.I.Jones², J.Davila³, B.Inhester⁴, M.Mierla⁵

¹ The Catholic University of America, NASA-Goddard Space Flight Center ² University of Maryland, NASA-Goddard Space Flight Center ³ NASA-Goddard Space Flight Center ⁴ Max-Planck Institute for Solar System Research, Germany ⁵ Astronomical Institute of the Romanian Academy, Romania

Tomography for the Solar Corona

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
- Noise in the data

Regularization

• Stationarity of the corona during the observations must be assumed. Coronal observations are restricted to only one-three view direction in ecliptic plane.

Scalar Field Tomography: Regularization

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
- Random noise in the data

In result, there is possible no unique reconstruction. Problem is ill-conditioned.

$$F = \sum_{i=1}^{\text{Number of Rays}} \left(I_i^{\text{sim}} - I_i^{\text{obs}} \right)^2 + \mu \cdot F_{\text{reg}} =$$
$$= \left| \mathbf{A} \cdot \mathbf{X} - \mathbf{Y} \right|^2 + \mu \cdot \left| \mathbf{L} \cdot \mathbf{X} \right|^2$$

Tomographic Reconstruction for the Solar Corona

Input:

- COR1B observations: pB images, 341x341 pixels
- Two weeks, ~ twice per day: 3 16 July 2007
- Monthly minimum background subtracted
- Starting point for the iterations is flat field (constant density)

Output:

• 3D Electron Density Distribution: 128x128x128 pixels

Isosurface: N_e =3.6*10¹⁰ m⁻³

Observation: pB image.

Reconstruction: Vertical cross-section.

White contour lines are boundary between open and closed magnetic field lines in potential field reconstruction with SS=2.5*R*sun

Spherical cross-section at $2 R_{sun}$

Corrington latitude [deg]

Corrington lotitude [deg]

2

3

90 $2.0R_{\odot}$ Reconstruction NSO CAR2058 -90 90 270 180 360 Carrington longitude [deg] 600 [cm^{-3/2}] 100 200 300 400 500 90 MHD simulation (http://iMHD.net/stereo) $2.0R_{\odot}$ MHD -9090 270 180 360 Carrington longitude [deg]

 $5 [10^6 \text{ cm}^{-3}]$

White contour lines are boundary between open and closed magnetic field lines in potential field reconstruction with SS=2.5*R*sun

Black contour line is the magnetic neutral line

3D Electron Density: Streamer

3D Position of the streamer has been found by triangulation method

3D Electron Density: Streamer

Red lines on pictures below are the streamer's positions found by triangulation method

Cross-section by plane perpendicular to *z*-axis (carrington system)

Acknowledgments

William Thompson

James McAteer

Gordon Petrie

Potential Field Approximation code was adopted from J.Luhmann's code.

Richard Frazin

Pete Riley, Jon Linker