Determination of CME 3D Trajectories using Stereoscopy STEREO CMES of 16Nov2007 and 31AUG2007

Have previously demonstrated 3D trajectory determination using synthetic white light data

Here, demonstrate 3D CME trajectory determination using SECCHI AB pairs
P. C. Liewer, E. M. DeJong, J. R. Hall, JPL/Caltech; R. A. Howard, NRL; W. Thompson, GSFC and the SECCHI Team STEREO SWG, Paris, April 2008

Stereoscopy and STEREOISECCHI

- SECCHI uses World Coordinate System (WCS) solar soft routines to relate image plane coordinates to heliocentric coordinate systems (see W. Thompson, A \& A, 2005, MS 4262thom)
- Need location of spacecraft A\&B (from emphemeris), pixel size (arcsec), and pixel location of Sun-center ($\mathrm{x}_{\text {SUN }}, \mathrm{y}_{\text {SUN }}$).
- Each pixel defines a unique ray
- In a single 2D image, feature can be anywhere along ray
- In 3D, if perfect tiepointing, rays intersect at feature
- Triangulation program locates feature at point of closet approach of the two rays

Stereoscopy of CMEs vs Localized Structures

- Bright localized coronal structures (loops, filaments) can be reconstructed in 3D from SECCHI A+B image pairs using stereoscopy
- Because CMEs are so diffuse, stereoscopy on line-ofsight (LOS) coronagraph images gives approximate 3D location of CME "edges"

Synthetic image pair from hemisphere shell CME model

STEREO CME November 16, 2007 COR2

LASCO CME 20072226.092608 - Behind limb for all 3 SC

Determination of 3D CME Trajectories

- CME visible in both STEREO A \& B with obvious difference in height $>\sim 40.4^{\circ}$ separation between A\&B on November 16, 2007
- User marks same features on CME in both images of COR2 AB pair
> Tiepoints are constrained to lie in epipolar line
> Here, tiepointing the leading edge of CME only
- Triangulation program finds 3D coordinates in heliocentric system
- Time series of 3D reconstructions aives 3D traiectorv

3D Reconstruction of CME Leading Edge

QuickTime ${ }^{\text {TM }}$ and a
decompressor are needed to see this picture.

CME Trajectory and Comparison with LASCO

"Comparison of LASCO \& STEREO-3D Height-Time for 16Nov2007 CME"

Carrington longitudes

$$
\begin{gathered}
\mathrm{B}=181^{\circ} \text { Earth }=201^{\circ} \mathrm{A}=221^{\circ} \\
\mathrm{CME}=315^{\circ} \\
\text { CME in A's Plane of Sky! }
\end{gathered}
$$

STEREO Prominence \& CME August 31, 2007

LASCO data gap: only caught trailing end

3D Reconstruction of Erupting Prominence

August 31, 2007
EUVI 304 data from
A + B
Long filament: pre-eruption

Every 2.5 mins are needed to see this picture. during eruption

CR Lat $=-30^{\circ}$
CR Long $=194^{\circ}$
$B=131^{\circ}$
Earth $=143^{\circ}$
$A=159^{\circ}$

3D Reconstruction of CME Leading Edge

August 31 - September 1, 2007

COR2 data, $A+B$
~30 min increments
COR1 - only lowest reconstruction

CR Lat $=-20^{\circ}$
CR Long $=210^{\circ}$
$B=131^{\circ}$
Earth $=143^{\circ}$
$A=159^{\circ}$

20070831_220500 to
20070901_033730

3D Reconstruction of Cavity Leading Edge

August 31, 2007
COR1 data, A + B

5 minutes increment

About 1 hr total

3D Reconstructions of Prominence + Leading Edges of both Dark Cavity and CME

August 31, 2007
EUV 304, COR1, COR2 data, A + B

Various times covering 7 hours

Software works across multiple FOVs!

Prominence

7

3D Reconstructions of Prominence + Leading Edges of both Dark Cavity and CME

August 31, 2007
EUV 304, COR1, COR2 data, A + B

Various times
covering 7 hours
Note all line up! are needed to see this picture.

3D Reconstructions of Prominence and Leading Edge of Dark Cavity

Shows relation of filament to dark cavity in 3D

Conclusions

- Demonstrated that stereoscopy can be used to track CME propagation in 3D
- Determined approximate 3D trajectory of 2 STEREO CMEs
- Validated software by comparison with LASCO height-time results
- Plan further tests by comparison with 3D forward modeling CME reconstruction of Therneisen et al.
- Reconstructed three parts of 2007/08/31 STEREO CME
- Bright Leading Edge, Dark Cavity Leading Edge, Prominence
- Demonstrated ability to track CME through 3 FOVs - EUVI, COR1,COR2

HD SECCHI A \& B Daily Quicktime Movies
http://solarmuse.jpl.nasa.gov

- Now EUVI 1K by 1K available

User: Science_Team Pass:secchi07
In Beta test - All telescopes

Backup Slides

Consider Increasing SC Separations with CME in between A\&B

SC A

SCB

Consider Increasing SC Separations with CME in between A\&B

Consider Increasing SC Separations with CME in between A\&B

Nov 16, 2007 Prom and CME

- Limb event for STEREO A - Behind the limb event for LASCO \& STEREO B
- COR1A shows clear deflection of CME towards equator

Stereoscopy of CMEs vs Localized Structures

- Bright localized coronal structures (loops, filaments) can be reconstructed in 3D from SECCHI A+B image pairs using stereoscopy
- Because CMEs are so diffuse, stereoscopy on line-ofsight (LOS) coronagraph images gives approximate 3D location of CME "edges"

Synthetic image pair from hemisphere shell CME model

