Estimating the CMEs propagation direction by using SECCHI-COR1 data

M. Mierla ${ }^{1}$, J. Davila ${ }^{2}$, W. Thompson ${ }^{2}$, B. Inhester ${ }^{3}$, N. Srivastava ${ }^{4}$, M. Kramar ${ }^{2}$, O.C. St. Cyr², G. Stenborg ${ }^{5}$, R.A. Howard ${ }^{5}$

1. ROB, Belgium,
2. GSFC, USA,
3. MPS, Germany,
4. USO, India,
5. NRL, USA

Contents

- The instrument and the Data

Description of the Method
Geometry
. 3D reconstruction
CME propagation and speed determination:
Case studies: 2007-05-15 \& 20
. Summary

STEREO-COR1

STEREO Mission

To Sun

Positions of STEREO A and B for 2007-05-15 00:00 UT

Data Used

STEREO-COR1 data

Data processing:

Total brightness images
Monthly background subtracted
Minimum model image subtracted
Co-align the images in STEREO mission plane

Method:

.Height-Time (HT) plots of the same identified feature in COR1-A and -B images
-- from a simple geometry: 3D coordinates of the coronal feature

Assumptions:

- the 2 spacecraft are in the ecliptic plane (errors < 3°)
- Affine geometry (for d=4Rs, error ~ 2\%)

A Quick Method for Estimating the Propagation Direction of Coronal Mass Ejections using STEREO-COR1 Images M. Mierla et al., submitted

15 May 2007, 20:15 UT

20 May 2007, 07:00 UT

20 May 2007

Epipolar Geometry

Inhester, 2006

Geometry

$$
\begin{aligned}
R_{3 d} & =\sqrt{\left(R_{2 d}\right)^{2}+z^{2}} \\
\lambda & =\arctan \left(\tan \left(\frac{\gamma}{2}\right) \frac{a-b}{a+b}\right) \\
\theta & =\arctan \frac{R_{2 d}}{z}
\end{aligned}
$$

$$
\begin{aligned}
R_{2 d} & =\sqrt{\alpha^{2}+\beta^{2}+2 \alpha \beta \cos \gamma}, \\
\alpha & =R_{B} \sin \phi_{B} / \sin \gamma \\
\beta & =-R_{A} \sin \phi_{A} / \sin \gamma \\
z & =R_{B} \cos \phi_{B}=R_{A} \cos \phi_{A}, \\
a & =-R_{A} \sin \phi_{A}, \\
b & =R_{B} \sin \phi_{B}
\end{aligned}
$$

Input

HT: 15-05-2007
HT: 20-05-2007

Output

Summary

Using HT diagrams on SECCHI-COR1 data:

- the propagation direction of CMEs
was derived
- their real speeds were inferred

Reconstruction of the $20^{\text {th }}$ May 2007 CME Leading Edge Nandita Srivastava

COR1A images- 20 May 2007

COR1B images-20 May 2007

RECONSTRUCTION OF THE LEADING EDGE USING TIE-POINTING

07:00

07:20

Identification of points along the leading edge. Seen along the sun-earth line Latitude is approximately 30 degrees south. Longitude (phi) is expressed in Carrington longitude.

Comparisons of Height Time plots

Latitude is 30 S in stonyhurst coord. system

Plane-of-sky speeds
LASCO, STEREO A and B ~ 230 km/s

True measured speed
From 3-D reconstruction ~ 470 km/s

Close to measured speed in-situ ~ $500 \mathrm{~km} / \mathrm{s}$ (PLASTIC data)

SUMMARY

Tie-pointing and Height-time Reconstruction techniques applied to May 20, 2007 CME

The results obtained from both techniques are consistent and also are close to that measured

These prove to be effective tools to get true speeds of a point on leading edge of CME.

