STEREO Science Working Group Meeting, Dec 15-16, 2003 Space Science Laboratory (SSL), University of Berkeley

Session 2: Issues for Discussion

3-D Imaging with STEREO

Markus J. Aschwanden (LMSAL) http://secchi.lmsal.com/Science/

1) How does Science drive the STEREO 3D Imaging & Analysis?

1) How does Science drive the STEREO 3D Imaging & Analysis?

Theoretical concept or model

Philosophy:

- 1) Scientific question expressed by quantifyable observables
- 2) Development of data analysis tools that quantify observables and are sensible to answer the question
- 3) YES/NO answer would ideally confirm/disprove model

Philosophy:

- 1) Scientific question expressed by observables
- 2) Development of data analysis tools that are sensible to answer the question
- 3) YES/NO answer would ideally confirm/disprove model

Example:

- 1) Does "Magnetic Break-out" or "loss-of-equilibrium" model trigger eruption of filament and lead to a CME?
- 2) Develop tool to derive 3D magnetic field from STEREO data and forward-fit 3D evolution with MHD codes.
- 3) None, one, or both models yield a good fit to data,
 - à disproves both models, confirms one model, or ambiguous choice

Magnetic breakout model (Antiochos 99)

Data modeling:

- 1) pattern recognition ("finger-printing")
- 2) 3D-parameterization of field lines
- 3) Reconstruct time evolution B(x,y,z,t)

"loss-of-equilibrium" model (Forbes & Priest 1995)

Data Analysis:

- (1) Measure footpoint convergence (driver?)
- (2) Measure vertical motion [h(t), v(t), a(t)]
- (3) Fit theoretical model of h(t) to data.

Required Data Analysis Tools:

- 1) Automated pattern recognition for curvi-linear structures (2D parameterization of magnetic field lines)
- 2) Tie-point finding algorithm of individual field Lines in two STEREO images
- 3) Combining 2D projections from 2 STEREO images into 3D coordinate of field lines
- 4) Volumetric modeling of CMEs by tomography, algebraic backprojection, or geometric forward-fitting

Forward-Fitting

Forward-Fitting

- -Requires parameterization of model
- -Number of parameters could be large
- -2D projection is given, only 3D coordinates need to be constrained by 2nd STEREO image
- -Strategy: develop tool with automated 2D-parameterization of curvi-linear features (loops, filaments, fluxropes, sigmoids, postflare loops, etc.)
- -3D coordinate can be first constrained by a-priori model (potential field, force-free, simple geometries, and then iteratively refined with projections from 2nd image, starting with the most unique and unambigous tie-points.

Forward-Fitting

Inversions generally are coarse because of data noise, ambiguities, non-uniqueness Advantage of inversions: they are model-independent Inversion methods for STEREO images: e.g.

3D tomography (SMIE, Bernie Jackson)

3D Pixon reconstruction (SECCHI, John Cook; commercially available)

Inversion

Choise of 3D-modeling method: Tomography, 3D-Pixon, Forward-Modeling?

STEREO Timing: Small stereo angles (1st year, <45 deg) most suitable for stereoscopy Large stereo angles (2nd year, <90 deg) better for volume tomography STEREO - A STEREO - B

Forward-fit Algorithm for Stereo Image Pair:

- 1. Selection of structure-rich multi-wavelength image from TRACE, EIT, and/or Yohkoh database (with filament, flare, CME, fluxropes, etc.)
- 2. Tracing linear features (loops, filaments, fluxropes) in 2D: s(x,y)
- 3. Inflation from 2D to 3D with prescription z(x,y) $s(x,y) \rightarrow s(x,y,z)$
- 4. Physical model of structures: T(s), n(s), p(s), EM(s)
- 5. Geometric rotation to different stereo angles $EM(x,y,z) \rightarrow EM(x',y',z')$
- 6. Line-of-sight integration $EM(x',y')=\int EM(x',y',z')dz'$ and convolution with instrumental response function
 - à http://www.lmsal.com/~aschwand/ppt/2002_Paris_stereo.ppt

Simulation of STEREO images at different stereo angles

Volumetric Forward-Modeling of Stereo images versus Inversion with tomography

Pixon reconstruction of CME structures in STEREO images:

3D tomography reconstruction of SMIE data

IPS (left) and SMEI (right) low resolution tomography of May 29, 2003 halo CME.

http://cassfos02.ucsd.edu/solar/smei_new/analysis.html (Bernie Jackson)

3) Interfacing 3D Imaging: SECCHI-HI-SMEI – SDO -

3) Interfacing 3D Imaging: SECCHI – HI – SMEI – SDO - ...

SECCHI Exploration of CMEs and the Heliosphere on STEREO

- A. What Configurations of the Corona Lead to a CME?
- B. What Initiates a CME?
- C. What Accelerates CMEs?
- D. How Does a CME Interact With the Heliosphere?
- E. How do CMEs Cause Space Weather Disturbances?

A. Explore the Magnetic Origins of CMEs.

- Photospheric Shearing Motions
- Magnetic Flux Emergence
- Magnetic Flux Evolution and Decay

B. Understand the Initiation of CMEs

- Reconnection
- The Role of Plasma vs. Magnetic Field Effects.
- Rapid vs. Slow Drivers

E. The Sun-Earth Connection: Understand the Role of CMEs in Space Weather

- Observe Trajectory of Earth-Directed CMEs
- Predict Arrival Time and Geo-Effectiveness of CMEs

D. Investigate the Interaction of CMEs With the Heliosphere

- CME Physical Signatures at 1 AU
- Generation of Shocks.
- Acceleration of Charged Particles:
- Interaction With Heliospheric Plasma
- Sheet & Co-Rotating Interaction Regions Interaction With Other CMEs

C. Study the Physical Evolution of CMEs

- Reconnection
- Continued Energy Input and Mass Ejection
- Effect on Helmet Streamers

Discussion – Session 2:

- à HI Image Simulation Chris Davis
- à HI Operations Davis Neudegg
- à HI/SECCHI Sarah Matthews
- à SMEI Dave Webb, Bernie Jackson (accomplished tomography at low resolution)
- à VSO (Virtual Solar Observatory) Bill Thompson

Other Input:

- à SECCHI high/low telemetry rate vs. stereo separation angle (Wuelser)
- à Automated Detection and 3D Reconstr. EUV Prominences (Claire Fullon)
- à LASCO, Automated detection of CMEs (David Berghmans)
- à SECCHI White-light Coronograph 3D heliospheric reconstruction/pixon (Reiser, Cook, Newmark, Crane, Yahil, Gosnell, Puetter)
- à Image tomography based on magnetic field input (Bernd Inhester, Maxim Kramer; Stereo meeting 2002)
- à Automated pattern recognition used for finding tie-points (Paulett Liewer and Eric de Jong)
- à Multiscale Vision Model à multi-scale tie-points ? global matching, local w. epipolar lines (Fabrice Portier-Fozzani, 2001) optical flow methods (T.Papadopoulo et al. 2000) – (Thierry Dudok de Wit, Image processing meeting 2003)

Web-sites related to STEREO 3D Imaging:

http://stereo.nrl.navy.mil/html/3dindex.html

http://sol.oma.be/SECCHI/

http://sol.oma.be/SIRW/

http://secchi.lmsal.com/Science/

http://stereo.jhuapl.edu/

http://stp.gsfc.nasa.gov/missions/stereo/stereo.htm

http://star.mpae.gwdg.de/secchi/index.html