

M.Kramar¹, J.Davila², H.Xie¹, D.Lamb¹, B.Inhester³, H.Lin⁴

¹ The Catholic University of America, NASA-Goddard Space Flight Center ² NASA-Goddard Space Flight Center ³ Max-Planck-Institut fuer Sonnensystemforschung ⁴ University of Hawaii

Scalar Field Tomography: Regularization

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
- Random noise in the data

In result, there is possible no unique reconstruction. Problem is ill-conditioned.

$$F = \sum_{i=1}^{\text{Number of Rays}} \left(I_i^{\text{sim}} - I_i^{\text{obs}} \right)^2 + \mu \cdot F_{\text{reg}} =$$
$$= \left| \mathbf{A} \cdot \mathbf{X} - \mathbf{Y} \right|^2 + \mu \cdot \left| \mathbf{L} \cdot \mathbf{X} \right|^2$$

Tomography for the Solar Corona

- Problem is badly conditioned, e.g. number of unknown variables exceeds the number of equations
 Noise in the data
- Noise in the data

 Stationarity of the corona during the observations must be assumed. Coronal observations are restricted to only one-three view direction in ecliptic plane.

Tomographic Reconstruction for the Solar Corona

Input:

- COR1 observations: pB images
- Observations during a half of solar rotation, 2-4 obs per day
- Roll minimum background subtracted
- Starting point for the iterations is flat field (constant density)
- Weighting factor is applied for low intensity pixels

Output:

• 3D Electron Density Distribution: 128x128x128 pixels

Reconstruction: CAR 2058

Isosurface: $N_e=3.6*10^{10} \text{ m}^{-3}$

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 * 10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e=3.6*10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 \text{ m}^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 \times 10^{10} \text{ m}^{-3}$

Isosurface: $Ne=3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 * 10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 * 10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e=3.6*10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 * 10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Reconstruction: CAR 2058

Isosurface: $N_e = 3.6 * 10^{10} \text{ m}^{-3}$

Isosurface: Ne= $3.6e+10 m^{-3}$

Spherical cross-section at $2 R_{sun}$

Corrington lotitude [deg]

Corrington lotitude [deg]

2

3

90 $2.0R_{\odot}$ Reconstruction NSO CAR2058 -90 90 270 180 360 Carrington longitude [deg] ⁶⁰⁰ [cm^{-3/2}] 100 200 300 400 500 90 MHD simulation (http://iMHD.net/stereo) $2.0R_{\odot}$ MHD -9090 270 360 180 Carrington longitude [deg] $5 [10^6 \text{ cm}^{-3}]$

White contour lines are boundary between open and closed magnetic field lines in potential field reconstruction with SS=2.5*R*sun

Black contour line is the magnetic neutral line

Tomography for the Solar Corona: Errors

Tomography for the Solar Corona: Errors

Relative Error due to non-stationarity of the corona

One day difference

Seven days difference

<u>CME: June 1st</u>, 2008

Before the CME

After the CME

CME: Dec 31st, 2007 & Jan 2, 2008

Before the CME

After the CMEs

<u>CME: June 1st</u>, 2008

Before the CME

After the CME

Mass lost by the streamer: 9*10¹⁴ g

CME mass in COR1 FOV: ~9*10¹⁴ g (Robbrech et al 2009)

CME: June 1st, 2008

Before the CME

After the CME

Next: Vector Field Tomography for the Coronal Magnetic Field

Zeeman/Hanle-effect in the Corona:Observations of Fe XIII

Lin et al. 2004

Hanle – effect: Emission coefficients

FeXIII and FeXIV ions (Querfeld 1982)

8 _I	$4\Sigma \ \varDelta \ 3\cos^2\theta - 1 \qquad 3\cos^2\theta - 1$
<i>е _Q</i>	$\varDelta 3\cos^2\Theta - 1 \sin^2\theta\cos 2\alpha$
\mathcal{E}_{U}	$\varDelta 3\cos^2\Theta - 1 \sin^2\theta\sin2\alpha$
Е _V	0

- θ is the angle between the magnetic field direction and the LOS to the observer;
- α is the angle between the local radius and the observed polarization projected on the POS;
- Θ is the angle between local radius and magnetic field direction;
- $\varSigma\,$ and $\varDelta\,$ are proportional to the Zeeman sublevel populations

depends on the properties of incident light, T, N;

 $V = 3\cos^2 \Theta - 1$ is the van Vleck factor

There is no information about magnetic field strength!

Vector Field Tomography: Regularization

We need additional information about field:

Magnetic field is divergence-free: B=0

Nice properties of this regularization:

- makes the use of photospheric \boldsymbol{B} observation as boundary condition
- reproduces standard potential **B** if *div*-term alone is minimized

Conclusion

- We can produce 3D reconstruction of electron density almost for any period of COR1 observations in routine way.
- It was found evidence of streamer blow out during CME event on June 1st 2008 – it is not LOS effect.
- Streamer mass loss for slow CME on 1st June 2008 is 9*10¹⁴ gram which is comparible with the CME mass in COR1 field of view
- After the CME the coronal magnetic field came to the nearly potential configuration.
- Vector tomography based on spectropolarimetric observations has a possibility to reconstruct the non-potential field that could lead to CME eruption.