Tests of the models of coronal magnetic loops inductive interaction within the SECCHI on the STEREO mission and their relation to CME phenomena

M. L. Khodachenko. and H. O. Rucker

Space Research Institute, Austrian Academy of Sciences, Schmiedlstr.6, A-8042 Graz, Austria E-mail: Maxim.Khodachenko@oeaw.ac.at

ABSTRACT

We summarize here a few theoretical models, which employ the ideas of possible inductive interaction between the coronal electric currents usually confined within the current-carrying magnetic loops These models are addressed to the basic dynamical processes groups of solar coronal magnetic loops and can be related to the phenomena of CMEs, flaring "loop-loop interaction", and acceleration of charged particles. An information about the 3D structure of coronal loops and their global dynamics (rising, twisting, oscillation) is crucial for the considered models, and we expect that the data from SECCHI on the STEREO will appear as a good test for them

INTRODUCTION

The solar corona is a highly structured medium. Coronal loops which trace closed magnetic field lines, are the primary structural elements. These loops are the evolving objects growing up and changing their shape. Complex dynamics of the loops together with action of possible under-photospheric dynamo mechanisms cause the majority of coronal magnetic loops to be very likely as the currentcarrying ones [1]. In that connection none of the loops can be considered as isolated from the surroundings. Moving relative each other current-carrying loops should interact via the magnetic field and currents. The simplest way to take account of this interaction consists in application of the equivalent electric circuit models of the loops as well as in the consideration of the ponderomotoric interaction of their currents. In these models each loop is considered as an electric circuit with variable parameters (resistance, inductive coefficients) which depend on the shape, scale, position of the loop with respect to neighbouring loops [2]. Plasma parameters in the magnetic tube as well influence the electric characteristics of the equivalent circuit

MODELS

1. Inductive interaction of two currentcarrying loops. "Loop-loop interaction"

It follows from observations that a large number of flares occurs in the regions where a new magnetic loop emerges and interacts with the existing loops [3]. Such events are known as the "interacting flare loops". Here we present a further development of the idea of the loop-loop inductive interaction, which was first suggested by Melrose [4] and later applied by Aschwanden et al. [5] for interpretation of observations

V.

In addition to [4] and [5], we note that the relative motion of the loops creates significant inductive electro motive forces in their electric circuits which appear as a powerful source for changing the currents in the loops. Change of the currents disturbs the pre-existed thermal equilibrium of the loops and results in a change of the plasma temperature, which in its turn influences the resistivity of the circuit and the rted

energy losses. There-

that

current-carrying loops

fore each of the rising magnetic loops (see Fig.1) in our model is described by two equations [2]: the equation for the electric circuit

(1) and the ener $I_i R_i = U_{0i} - \frac{1}{c^2} \left(L_i \dot{I}_i + I_i \dot{L}_i + M_{ij} \dot{I}_j + I_j \dot{M}_{ij} \right)$

(2)

$$\dot{T}_i = \frac{1 - \gamma}{2n_i k_B} \left(n_i^2 Q(T_i) - \frac{j_i^2}{\sigma(T_i)} - H_i \right)$$

where *i*, *j* are the second sec

 M_{ii} and L_{ii} mutual- and self- nductances: ni Ti, temperature and density of plasma in i-th loop; $J_i = I_i \, \Im \, \mathbb{Z} \, \mathbb{Z} \, \mathbb{Z}$ current density in the loop; $O(T_i)$, radiative loss function [6]; H_i stationary background heating

A thin torus approximation is applied for the loops ($R_{loop} >> r_0$). So the inductive coefficients are

where d_{ii} is the distance between the centers of the loops tori and $e_{\mathcal{T}_{ij}}$, the angle between the normal vectors to the loops planes.

A linear increase in time of the major radii of the loops $R_{loop i}$ $R^{\theta}_{loop i} + v_i t, i=1,2$ is considered, and the initial steady state and thermal equilibrium are assumed. One of the loops is taken to be initially current-free $(I_{20} = 0)$.

The numerical solution of Eqs. (1), (2) for both loops indicates :

- Quick build up of the current in the initially current-free loop; - Significant increase of the current and plasma temperature in
- the loops when they become to be of the same size (a flare);
- The most efficient interaction of the parallel loops ($e_{T_{12}} = 0$)

Fig.2: Dynamics of currents and plasma temperature in the parallel $\begin{array}{l} (e_{T_12}=0) \ |oops \ in \ dependence \ on \ the \ distance \ d_{12} \ (R_{loop}^{0})=2 \ .10 \\ e_{m} \ R_{loop}^{0}=10 \ ^{8} \ cm, \ r_{01}=r_{02}=5 \ .10 \ ^{7} \ cm, \ v_{1}=5 \ .10 \ ^{5} \ cm/s, \ v_{2}=10 \\ cm/s, \ n_{1}=n_{2}=10 \ ^{9} \ cm^{-3}, \ T_{1}(t=0)=T_{2}(t=0)=10 \ ^{6} \ K, \ I_{10}=10^{11} \ A, \ I_{20}=0). \end{array}$ v2=10 6

The inductive electric field produced in the loop can be estimated

I

our model for t > 2000

Finally we obtain

inductive field can acce lerate electrons in the loop up to energies $W = q[e] \cdot E[V/m] \cdot l_{loop}[m]$ = 100...1000 eV

2. CMEs as rising magnetic loops. **Acceleration of CMEs**

Dynamics of a rising cun $F_{itft} = -\frac{\partial U}{\partial R_{top}} \stackrel{\text{op is using curve}}{1 \sum M_{it} \equiv L_i} e^{-pree}$ $F_{m} = \frac{\partial}{\partial s} \left(\frac{B^{2}}{8\pi}\right) s + \frac{B^{2}}{4\pi} \frac{n}{R_{loop}} , \text{ where } U = -\frac{1}{2c^{2}} \sum_{i,j} M_{ij} I_{i} I_{j}, M_{ii} \equiv L_{i} \frac{m}{s}$

the potential force function of a system of currents.

 F_m decreases when the R_{loop} increases. And in the case of $F_{lift} > F_m$ we have *acceleration* of the loop by the ponderomotive forces (Fig.4).

The MHD simulations in [7] find that a flux rope with sufficient magnetic energy density will erupt. The source of this energy comes from the ponderomotoric interaction of currents in the filament and the system of underlying loops.

In the model calculations I F_{lift} we consider a symmetric group consisting of three current-carrying loops. The bigger loop in the center of the group is vertical whereas the lateral loops on both sides are inclined on the same angle but in different directions. In Fig.5 the dependence of the lifting force applied to the central loop on the height of the lateral loops is shown.

3. Acceleration of charged particles by inductive electric fields in CMEs

We model CME as a rising and expanding closed current-carrying loop above the group of magnetic loops (Fig.6)

CONCLUSION

In order to apply the ideas of the above equivalent electric circuit models for explanation of physical processes in coronal magnetic loops and CMEs, a detailed information on the 3D structure and dynamics of these objects as well as data on their plasma characteristics are needed. The presence and structure of the currents in the spatial domains of interest can be detected from high resolution chromospheric and low corona images combined with the vector magnetograms data. All these tasks can be performed by the SECCHI remote sensing instruments [8]. The additional information on the magnetic field can be made available from Solar-B and the National Solar Observatory SOLIS magnetographs.

REFERENCES

Melrosc, D. B., 1995, ApJ, 451, 391.
 Khodachenko, M. L., Zaitsev, V. V., 1998, Astron, Reports, 42, No.2, 265.
 Nishino, M., Yaji, K., Kosugi, T., Nakajima, H., Sakurai, T., 1997, ApJ, 489, 976.
 Melrosc, D. B., 1997, ApJ, 486, 521.
 Asekwanden, M.J., Kongi, T., Hannaka, Y., Nishio, M., Melrosc, D. B., 1999, ApJ, 526, 1026.
 Peres, G., Romer, R., Serio, S., Vainan, G.S., 1982, ApJ, 282, 791.
 Wu, S.T., Gao, W.-P., Dryer, M., 1997, Sohar Phys., 170, 265.
 Russell A., Howard, J., Daniel, Mores, Dennis G. Socker, "Suint Conronal and Heliospheric Contention Coronal and Heliospheric Conterference on Instrumentation for UVEUV Astronomy and Solut Missicanse, and Technology in the Conterference on Instrumentation for UVEUV Astronomy and Solut Missicanse, J. Aug. 2000 (http://projects.nrl.navy.mil/seechi/images/SPIE_4139-26.pdd)