PHYSICAL LINK BETWEEN CMEs AND MAGNETIC CLOUDS: THE COMBINE BENEFIT OF THE STEREO MISSION AND MAGNETIC HELICITY CONSERVATION

P. Démoulin, C.H. Mandrini, L. van Driel-Gesztelyi, L. Green, M.C. Lopez Fuentes, B.J. Thompson, S. Plunkett, Zs. Kővári, G. Aulanier, A. Young

Why magnetic helicity ?

- Intrinsic property of the physical process e.g. Inverse MHD cascade, build up of twisted flux rope
- Conserved quantity ⇒ track the magnetic flux from its formation to the heliosphere

Magnetic flux travel

Heliosphere (1 AU)	$10^{-8} { m T}$	$(10^{-4}{\rm G})$	expansion, relaxation (MC)
Corona (low)	10^{-2} T	$(10^{2}{ m G})$	accumulation, unstability
Phostosphere	$10^{-1} { m T}$	$(10^{3}{ m G})$	expansion, relaxation
Convective zone			transport
Tachocline	10 T	$(10^5 \mathrm{G})$	dynamo, Parker unstability

Magnetic helicity: main features

• Definition of the **relative** magnetic helicity

$$H_r = \int_V \vec{A} \cdot \vec{B} dV - \int_V \vec{A_0} \cdot \vec{B_0} dV$$

with:

$$\vec{B} = \vec{\nabla} \times \vec{A} \,,$$

and, $\vec{B_0}$: potential magnetic field.

- H_r is gauge-invariant $(\vec{A} \to \vec{A} + \vec{\nabla} \Phi)$ (Berger & Field 1984, Finn & Antonsen 1985)
- **Conservation** of H_r

$$\left|\frac{\Delta H_r}{H_r}\right| \le \sqrt{\frac{\Delta t}{\tau_d}}$$

with:

 $\Delta t = \text{evolution time}$ $\tau_d = L^2 / \eta \text{ (diffusion time)}$ (Berger 1984)

- Hemispherical rules ($H_r < 0$ in the northern hemisphere) (Seehafer 1990, Pevtsov et al. 1995, Bothmer & Rust 1997)
- Accumulation of H_r in the corona \implies CMEs (Rust 1994, Low 1996)

Input of helicity in ARs

* Magnetic helicity input at the photosphere:

$\frac{dH_r}{dt} =$		helicity flux
$+2\int_{S}(\vec{A_0}.\vec{B})(\vec{v}.\vec{dS})$		emergence
$-2\int_S (\vec{A_0}.\vec{v})(\vec{B}.\vec{dS})$		differential rotation
	+	shearing motions

(note: can select $\vec{A_0}.\vec{dS} = 0$)

* Evolution of $B_{//}$: from SoHO/MDI in AR 7978

* Coronal helicity: from SXT/Yohkoh and lfff extrapolation

Input of helicity in two ARs

* Long-term evolution of two ARs:

- AR 7978: **6** rotations - AR 8100: **5** rotations poster: Green et al.

with: Yohkoh/SXT, SoHO/MDI

* For the two ARs:

Both differrential rotation & shearing motions

- **do NOT** bring enough magnetic helicity in the corona (up to a factor 10)
- could be of **opposite sign** as ΔH_{corona}

 \implies importance of **emergence & torsional Alfvén waves**

(Démoulin et al. 2002, Green et al. 2002)

Ejection of magnetic helicity

* How to estimate the magnetic helicity ejected ?
- identification of all CMEs lauched from an AR with: SoHO/(EIT,LASCO)
- no B measurement in CMEs ⇒ assume: < H_{CME} >=< H_{MC} >
- In situ measurement of B in MCs + model (lfff) → H_{MC}

* Magnetic helicity in magnetic clouds

deduced from: Lepping et al. 1990 $$18\ {\rm MCs}$$

assume a MC length = 0.5 AU

 $< H_{MC} > \approx 2.10^{42} \text{ Mx}^2$

Ejection of helicity from two ARs

* Long-term evolution of two ARs:

- AR 7978: 6 rotationsAR 8100: 5 rotations poster: Green et al.
- with: Yohkoh/SXT, SoHO/(MDI,EIT,LASCO)

* Magnetic helicity ejected:

AR	N _{CME}	N _{CME}	H_{MC}	H_{MC}	$H_{\rm diff.rot.}$		
	observed	corrected	(CME obs.)	(CME cor.)			
7978	26	31	52.	62.	8.		
8100	19	41	38.	82.	-7.		
	(in unit of 10^{42} Mx ²)						

Note: assume $L_{MC} = 0.5 \text{ AU} \text{ (only !)}$

$\longrightarrow \frac{\text{differrential rotation do NOT bring enough}}{\text{magnetic helicity !}}$

(Démoulin et al. 2002, Green et al. 2002)

Result \neq DeVore (2000)

difference: sensitivity & duty cycle of the SMM / SoHO coronographs

Input of STEREO

- **Photosphere:** Input of magnetic helicity by:
 - differential rotation
 - shearing motions
 - emergence $\implies \vec{B}$: ASP, THEMIS, SOLAR B

• <u>Corona:</u>

Determine **3D** magnetic configurations: **EUVI/SECCHI** (+ magnetograph) "loop organisation" \implies coronal magnetic helicity

• Heliosphere:

- local measurements of \vec{B} with magnetometer: MAG/IMPACT + MC model \implies MC magnetic helicity
- "lucky case": detection by STEREO #1 & #2 of the same MC \implies differences in the local properties

• Link Corona-Heliosphere:

- associate a given MC to a CME: coronographs + heliosphere imager of SECCHI
- combine global and local measurements
 with the constraint of magnetic helicity conservation

is a CME the result of coronal helicity build up ?