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The twin STEREO spacecraft will carry onboard the SECCHI (Sun-
Earth Connection Coronal and Heliospheric Investigation) experiment,
which consists of an EUVI disk imager and three white light coron-
agraphs on each spacecraft. At NRL we are investigating the tomo-
graphic electron density reconstructions, and their limitations, which
are achievable from just two viewpoints using the coronagraph obser-
vations.
In this presentation we discuss the physics and geometry used in our

PIXON reconstruction technique. As part of our technique, we must
mathematically calculate (render), from a given electron density distri-
bution in space, a synthetic white light image of the electron-scattered
K corona along a chosen line-of-sight from the center of the solar disk to
the center of the synthetic image. We discuss the physics of Thomson
scattering of photospheric light from coronal electrons, in radial and
tangential polarizations. The geometry we have implemented includes
the observer at a finite distance from the Sun, not at infinity, and a
model Sun with full limb darkening treatment. Our reconstruction
technique must be sufficiently robust and general in its geometric basis
to handle not just the Sun-centered Cor 1 and Cor 2 coronagraphs, but
also the HI (Heliospheric Imager) coronagraph which observes outward
along the Sun-Earth line, introducing more demanding reconstruction
considerations.
This work is supported by NASA under S-13631-Y, and by the Of-

fice of Naval Research. The SECCHI experiment is an international
collaboration lead by the Naval Research Laboratory.
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STEREO

The SECCHI[1] coronagraphs will be carried on board the two
STEREO spacecraft in solar orbit. They will each view the solar K-
corona from a different angle. One spacecraft will be ahead of the
earth in its orbit around the sun, the other will be behind. The over-
lapping viewpoints will allow a clearer picture of the solar K-corona to
be obtained.

Figure 1: STEREO Spacecrafts and the Sun

In order to reconstruct the electron density from the image of the
K-corona captured by the spacecrafts, we must be able to:
• Calculate the radiance at each spacecraft due to the scattered ra-
diation from any line of sight viewed by the spacecraft

• Calculate the position of that line of sight on the detector of each
spacecraft.
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Thomson Scattering

The solar K-corona arises from Thomson scattering of solar photons
from hot coronal electrons. The scattered radiation is polarized, and is
dependent upon the scattering angle χ. The following diagram defines
the relevant parameters for Thomson scattering from a point source

Figure 2: Geometry for Thomson Scattering

The fact that the sun is actually an extended source will modify the
physics of the scattering process. Qualitatively the effect will be to
reduce the degree of polarization of the scattered radiation
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Emission Coefficient

We separate the scattered radiation into tangentially and radially
polarized light. The tangential emission coefficient (photons sec−1

cm−3 sr−1) may be written:[2]

εt(r) =
πI0σ

2
ne(r) ΣA

and the radial emission coefficient may be written:

εr(r) =
πI0σ

2
ne(r) (ΣB cos2(χs) + ΣC)

where I0 is the solar intensity at disc center, R is the solar radius, r is
the distance of the scattering point from sun center, σ is the Thomson
scattering cross section, χs is the scattering angle, and ΣA, ΣB, and
ΣC , are functions of r/R which account for the non-zero radius of a
limb-darkened sun[2, 4, 3, 5].
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Figure 3: Definition of Angles for Limb Darkening
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Polynomial Limb Darkening

The Σ-coefficients are defined as[2]:

ΣA ≡
∫ 1

cos(Ω)
L(θ)

[

cos2(θ) + 1
]

d cos(θ)

ΣB ≡
∫ 1

cos(Ω)
L(θ)

[

3 cos2(θ)− 1
]

d cos(θ)

ΣC ≡ ΣA − ΣB

where L(θ) is the limb darkening function. We may approximate the
limb darkening function by a polynomial[6] in cos(ψ)1:

L(θ) =
N
∑

n=0
an cos

n(ψ)

The Σ coefficients now become:

ΣA =
N
∑

n=0
anAn(Ω)

ΣB =
N
∑

n=0
anBn(Ω)

where:

An ≡
∫ 1

cos(Ω)

[

cos2(θ) + 1
]

cosn(ψ)d cos(θ)

Bn ≡
∫ 1

cos(Ω)

[

3 cos2(θ)− 1
]

cosn(ψ)d cos(θ)

These integrals may be solved to yield analytic expressions for the
Σ coefficients for any N . We may also derive the following expression
relating the mean and central solar intensity.

Im
I0
= 1−

N
∑

n=1

n an
n + 2

1In order to assure that L(0)=1, the an are constrained by:

N
∑

n=0

an = 1
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Spacecraft Measurement of Scattered

Radiation

Now that we have the emission coefficient for a volume element, we
will want to determine the number of photons collected by a pixel of
the spacecraft’s CCD detector. Since the K-corona is optically thin,
this will be the sum of the contributions of all volume elements ”seen”
by that pixel.

Assuming the angle of incidence to the camera is small, the total
number of photons contributed by a volume element dV may be writ-
ten:

dN = aT
ε(r) dV

r2s

where a is the aperture area and T is the exposure time. The total
number of photons at that point on the detector will be the integral
along the entire line of sight (C):

N = aT
∫

C

ε(r)

r2s
dV (6.1)

Defining τ as the plate scale (radians per pixel), we may also write the
number of photons striking a pixel as:

N = aT τ 2
∫

C
ε(r) dl (6.2)

but in order to accomplish this integration, we must determine the path
length through a voxel and determine whether the voxel is wholly or
partially in the field of view of the pixel. This is computationally less
convenient than Equation 6.1.
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The Rendering Process

The electron density will be approximated by a cubic array of voxels.
It will be assumed that the scattered radiation from a voxel can be
approximated by a point source located at the center of the voxel. This
will allow a simplification of the rendering process. Having determined
the flux at each imaged point on the detector, we now want to find
the position of that imaged point on the detector. In order to simplify
things, we will consider the imaging system of each spacecraft to be a
pinhole camera.
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Figure 4: Imaging of Scattering Volume by Pinhole Camera

To a first approximation, we may consider the response of a pixel
in the detector to be the sum of the contributions of all voxels whose
centers are imaged inside that pixel.
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Coordinate Systems

In order to calculate the position and intensity of a voxel image on
the detector, a number of geometric parameters are required. Some of
these parameters are very simply expressed in certain coordinate sys-
tems, others are better expressed in other coordinate systems. There
are a total of five coordinate systems which have been found useful in
this development. They are:
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Figure 5: The Five Coordinate Systems

• The image coordinate system (µ, ν, λ)

• The solar coordinate system (x, y, z)

• The spacecraft coordinate system (xs, ys, zs)

• The detector coordinate system (x′s, y
′
s)

• The data coordinate system (is, js)
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Projective Geometry

The formalism of Projective Geometry[7, 8] is especially useful in
analyzing the rendering process. As an example of its usefulness, con-
sider the affine transformation. We will want to transform between the
various coordinate systems described above. These coordinate systems
are all related by affine transformations. The vector r′ is related to
vector r by an affine transformation if:

r′ = Tr + r0

where T is a linear vector operator. For 3-dimensional vectors, this
relationship may be written in matrix notation as:
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Projective geometry represents 3-dimensional points in a real Euclidean
space as 4-dimensional arrays with an equivalence relationship (∼=) such
that r ∼= λr where λ is a real number 6= 0. In projective geometry
terms, we may represent the above affine transformation as:

















x′
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R00 R01 R02 x0
R10 R11 R12 y0
R20 R21 R22 z0
0 0 0 1
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In other words, the affine transformation in 3-space becomes a linear
transformation in projective space. All of the conceptual simplicity and
advantages of linear analysis can be brought to bear on the Euclidean
space by treating it as a projective space. This is just one example of
the many ways in which projective geometry will be found useful.
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Coordinate Transformations

The 5 coordinate systems will require 4 transformations to link them.
Defining Λ = [µ, ν, λ] as the image coordinates, with Λ0 being the im-
age coordinates of the sun, the transformation linking solar coordinates
(r = [x, y, z]) to image coordinates is:
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y
z
1















∼=















1 0 0 -µ0
0 1 0 -ν0
0 0 1 -λ0
0 0 0 1/d
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or r = WΛ

For a spacecraft pointing at the sun, at angle γ to the x-axis, a distance
of L from the sun, the transformation linking spacecraft coordinates
(rs = [xs, ys, zs]) to solar coordinates is:
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ys
zs
1
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Sγ −Cγ 0 0
0 0 1 0
−Cγ −Sγ 0 L
0 0 0 1
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or rs = Rr

Defining h as the distance from the aperture to the detector plane, the
transformation linking detector coordinates (r ′s = [x

′
s, y

′
s) to spacecraft

coordinates is:









x′s
y′s
1









∼=









h 0 0 0
0 h 0 0
0 0 1 0
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or r′

s = Prs

Defining k as the length of the side of a pixel, the transformation
linking data coordinates (k = [i0s, j0s]) to detector coordinates is:









is
js
1









=











1/k 0 i0
0 1/k j0
0 0 1



















x′s
y′s
1









or k = Vsr
′

s

Finally, the transformation linking image coordinates to data coordi-
nates is just the product of the transformations:

k ∼= (V sPRsW )Λ ≡ GΛ (10.3)
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The PIXON Method

We are using the PIXON method[9, 10, 11, 12] to estimate the elec-
tron density distribution from the images of the K-Corona measured
by the two STEREO spacecrafts. Although in principle, there are an
infinite number of solutions to this tomography problem, the PIXON
method seeks a solution which has minimum complexity. It does so
by smoothing the image model locally as much as the data allow, thus
reducing the number of independent patches or ”pixons” in the image.
A block diagram of the PIXON program is shown below:
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Figure 6: PIXON Block Diagram

One of the primary requirements of the PIXON software package
is that the Data Sampling Function (DSF) be specified. This es-
sentially takes as input the 3-D electron density image, and renders
it to a 2-D image of the Thomson scattered radiation. An associated
program, called the DSFT function, is essentially the transpose of the
DSF function, taking an input data image and back-projecting onto
the electron density cube.
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The Data Sampling Function (DSF)

The DSF renders the electron density into an image of the scattered
radiation. Define dNµνλ as the number of photons striking the detector
which originate from voxel µνλ. We may write the total number of
photons striking pixel i, j as Nij where:

Nij =
∑

µνλ
Φij;µνλ dNµνλ

where Φij;µνλ is the rendering function and specifies the fraction of the
photons from voxel µνλ which land on pixel ij. 2

Figure 7: Image of a Voxel on the Detector

Since the number of photons detected is proportional to the electron
density, we may write the dNµνλ as:

dNµνλ = Qµνλ nµνλ

where Qµνλ is the proportionality constant relating the integrated flux
to electron density. This allows the integrated flux to be written in
terms of the data sampling function (DSF) Hij;µνλ:

Fij =
∑

µνλ
Φij;µνλ Qµνλ nµνλ =

∑

µνλ
Hij;µνλ nµνλ

2As an example, a very simple rendering function is to assign all photons from a voxel to whatever pixel the point at
the center of the voxel images to:

Φij;µνλ = ∆(Kij − [GΛµνλ])

where K ≡ [i, j, 1] (i and j are integers), Λ ≡ [µ, ν, λ, 1], G is the transformation operator defined in Equation 10.3, and
∆(x) is the Kronecker delta function. The brackets represent the ”nearest integer” function.
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An Example

As an example of the PIXON solution to a given set of data images,
we have ’invented’ a solar CME which consists of half of a spheri-
cal shell whose axis of symmetry contains the sun. The ”true” and
reconstructed images are shown below:

Figure 8: ”True” and Reconstructed Rendered Data

Projections of the ”true” and reconstructed electron density are
shown in the figure below:

Figure 9: ”True” and reconstructed Electron Density
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