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ABSOLUTE AND CONVECTIVE INSTABILITIES 
OF THE HELIOPAUSE

Abstract Stability of shear flows is of fundamental importance in solar and solar-terrestrial physics. Examples of such flows include plasma 
flows, e.g., in the vicinity of the magnetopause of the Earth or planets, the boundaries between fast and slow streams of the solar wind or the flow 
in the vicinity of the heliopause. The normal mode analysis is not sufficient to predict if a finite portion of a shear flow looks stable or unstable. 
The reason is that this analysis deals with spatially periodic perturbations,  while real perturbations are always confined to a finite region. To 
study the stability of a shear flow with respect to perturbations finite in space we have to solve an initial-value problem. Then two scenarios are 
possible. In the first scenario the initial finite perturbation exponentially grows at any spatial position. Such a type of instability is called 
absolute. In the second scenario  the initial perturbation also grows exponentially, but it is swept away by the flow from any finite region so fast 
that it decays at any fixed spatial position. Such a type of instability is called convective. The classification of absolute and convective instability 
is important for the understanding of the physical processes in solar, solar-terrestrial and astrophysical plasmas, and for the interpretation of in-
situ observational data like STEREO.

Fig. 1: The model.

1 Introduction

Our motivations for the present study is to analyse the instabilities of the near flanks 
of the heliopause in the model of the solar wind -- interstellar medium interaction 
(Fig. 1) first suggested by Baranov et al. 1971. The dynamics of small localized 
disturbances is investigated in a KH-type flow in which one of the fluids is inviscid, 
but the other one is viscous, and no surface tension is present on the interface. A 
zoom of the simplified flank region is shown by Fig. 2. 

For modelling the heliopause in the framework of the 
stability analysis, we suppose that the linear 
perturbations considered possess the characteristic 
wavelength which is much smaller than the curvature 
radius of the heliopause at the apex point. Then a near 
flank of the heliopause can be assumed to be a planar 
tangential discontinuity and a local quasi-parallel 
stability analysis applied (Fig. 2). In this approach, the 
flank of the heliopause is a plane, and the base plasma 
flow on both sides of the flank is treated as being open, 
space-independent, unidirectional and parallel to this 
plane. Restricting our consideration to relatively small 
polar angles (θ<30°), where the plasma flow on both 
sides of the heliopause is strongly subsonic, we can use 
the incompressible fluid approximation. The plasma on 
both sides of the heliopause is a rarefied gas, and, 
hence, effectively no surface tension is present on the 
heliopause.

2 Solution to the boundary- and initial value problem

The perturbation interface η(x,t) can be formally expressed as an 
inverse Laplace-Fourier integral given by
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Here the dispersion function, D(ω,k),represents the model, whereas 
the function T(ω,k) depends on the initial and external 
perturbations. For studying absolute and convective instabilities of, 
and signalling in, the model, it is sufficient to treat the asymptotics 
of the perturbation interface given above and show that the roots of 
T(ω,k) do not cancel the corresponding contributions.

3 Normal modes are monochromatic disturbances satisfying the 
dispersion relation D(ω,k)=0. Kikina (1967) showed that for any 
non-zero value of real k there exists one and only one unstable 
normal mode and the growth rate is uniformly bounded ⇒ the 
initial-value problem for localised disturbances is well-posed!

4 Absolute and convective instability

To distinguish between the absolute and convective 
instability we have to study the asymtotic behaviour of 
η(x,t) at a fixed x as t→∞. This analysis has been done 
with the use of Brigg’s method (Briggs, 1964). For 
equilibrium values from Baranov et al. (1979) in the 
interval 10º≤ θ ≤30º we found all the instabilities are 
convective. These results are in excellent agreement 
with the results of numerical studies by Belov & 
Myasnikov (1999).  
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Fig. 2: The flank.


