3D curvature determination for the Bastille Interplanetary Shock: Multi-Satellite Triangulation

T. Terasawa ${ }^{1}$, S. Kawada ${ }^{1}$, F. M. Ipavich ${ }^{2}$, C. W. Smith ${ }^{3}$, R. P. Lepping ${ }^{4}$, J. King ${ }^{4}$, A. J. Lazarus ${ }^{5}$, and K. I. Paularena ${ }^{5}$
${ }^{1} \mathrm{U}$ of Tokyo, ${ }^{2} \mathrm{U}$ of Maryland, ${ }^{3}$ Bartol Res. Inst., U of Delaware, ${ }^{4}$ GSFC/NASA, ${ }^{5}$ MIT

Originally scheduled as a poster (abstract, page 20), then moved to the oral session 20 March, AM by LOC.

The shock normal direction

......important basic information describing the shock properties
For example,
it is believed that the acceleration process of electrons emitting type II radio bursts depends critically on the shock angle.

Determination of the shock normal:
conceptually simple, but not straightforward in reality \rightarrow e.g., Russell et al.(2000) JGR 105, 25143-

Determination of the shock normal direction
The Bastille day flare in 2000 IPS arrived on the next day (average speed ... 1AU/28hours ~ $1500 \mathrm{~km} / \mathrm{s}$)

Trace image

Lessons from the study of the Bastille IP shock ... ACE, SOHO,WIND,GEOTAIL and IMP-8 were all in the upstream solar wind!

We are going to show the results of

1. The conventional methods based on the single satellite observation (minimum variance, etc.)
2. 4-satellite method for the plane surface model
3. 5-satellite method for the spherical surface model
4. 5-satellite method for the plane surface model with constant $d V_{\text {shock }} / d t$ (time derivative of the shock speed)
the Bastielle interplanetary shock on 15 July 2000 3 of 5 satellites gave the magnetic field data

local determination of the shock normal direction

The conventional methods give consistent answers:

- WIND best fit (Lepping et al., 2001, Solar Phys. 204, 287):

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{w}}=(-0.93,+0.26,+0.26) \\
& \text { phi } \sim 164^{\circ}, \text { theta } \sim 15^{\circ}
\end{aligned}
$$

- magnetic minimum variance/Geotail:
$\mathrm{n}_{\mathrm{G}}=(-0.82,+0.42,+0.39)$
phi~ 153°, theta~23 ${ }^{\circ}$

n_{w} and n_{G} agree
(they make an angle $\sim 13^{\circ}$
which is within a typical error range.)

phi (longitudinal angle)
satellite constellation on 15 July 2000 and shock arrival times

SOHO and IMP8

 gave the plasma data. (IMP8 magnetometer was not working during this event, unfortunately.)

Satellite	$X[\mathrm{Re}]$	$Y[R e]$	$Z[\mathrm{Re}]$	Time [UT]	Time error $[\mathrm{sec}]$	Data source
ACE	247.03	18.88	15.58	$14: 16: 24$	± 1	B
SOHO	202.9	-67.8	12.29	$14: 17: 31$	± 3	plasma
GEOTAIL	25.03	6.8	-1.64	$14: 35: 45$	± 3	B
WIND	0.23	-69	-6.5	$14: 34: 50$	± 3	B
IMP8	10.5	30.5	5	$14: 38: 34$	± 22	plasma

4 satellites determine shock parameters if the shock has a plane surface.

latitudinal

plane surface model
--- results
shock normal direction (phi, theta)

Best fit normals by conventional methods

- GTL MVM
- WIND

4-satellite method for plane shocks

$$
\begin{aligned}
& \text { A-S-G-W } \\
\# & \text { A-S-8-W } \\
\triangle & \text { A-S-G-8 } \\
\nabla & \text { S-G-8-W } \\
\Leftrightarrow & \text { A-G-8-W }
\end{aligned}
$$

The result with the largest departure from the conventional methods does not depend on the IMP8 timing uncertainly.

spherical surface model formulation (1)

5-satellite method for spherical shocks

5-satellite method for spherical shocks
(Xc,Yc,Zc) center

$$
\begin{aligned}
& R_{c 0}+V s \mathrm{t}_{1}=\left[\left(\mathrm{X}_{1}-X c\right)^{2}+\left(\mathrm{Y}_{1}-Y c\right)^{2}+\left(\mathrm{Z}_{1}-Z c\right)^{2}\right]^{1 / 2} \\
& R_{c 0}+V s \mathrm{t}_{2}=\left[\left(\mathrm{X}_{2}-X c\right)^{2}+\left(\mathrm{Y}_{2}-Y c\right)^{2}+\left(\mathrm{Z}_{2}-Z c\right)^{2}\right]^{1 / 2} \\
& R_{c 0}+V s \mathrm{t}_{3}=\left[\left(\mathrm{X}_{3}-X c\right)^{2}+\left(\mathrm{Y}_{3}-Y c\right)^{2}+\left(\mathrm{Z}_{3}-Z c\right)^{2}\right]^{1 / 2} \\
& R_{c 0}+V s \mathrm{t}_{4}=\left[\left(\mathrm{X}_{4}-X c\right)^{2}+\left(\mathrm{Y}_{4}-Y c\right)^{2}+\left(\mathrm{Z}_{4}-Z c\right)^{2}\right]^{1 / 2} \\
& R_{c 0}+V s \mathrm{t}_{5}=\left[\left(\mathrm{X}_{5}-X c\right)^{2}+\left(\mathrm{Y}_{5}-Y c\right)^{2}+\left(\mathrm{Z}_{5}-Z c\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

five unknowns ($R_{c 0}, V s, X c, Y c, Z c$) and five equations
\rightarrow solvable (We need iterations to treat nonlinearity of Vs)

Let us take the S_{1} position as the origin of the new coordinate. Then we have,

$$
\begin{align*}
& R_{c 0}=\left[X c^{2}+Y c^{2}+Z c^{2}\right]^{1 / 2} \tag{1}\\
& R_{c 0}+V s\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\left[\left(\mathrm{X}_{2}-X c\right)^{2}+\left(\mathrm{Y}_{2}-Y c\right)^{2}+\left(\mathrm{Z}_{2}-Z c\right)^{2}\right]^{1 / 2} \tag{2}\\
& R_{c 0}+V s\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)=\left[\left(\mathrm{X}_{3}-X c\right)^{2}+\left(\mathrm{Y}_{3}-Y c\right)^{2}+\left(\mathrm{Z}_{3}-Z c\right)^{2}\right]^{1 / 2} \tag{3}\\
& R_{c 0}+V s\left(\mathrm{t}_{4}-\mathrm{t}_{1}\right)=\left[\left(\mathrm{X}_{4}-X c\right)^{2}+\left(\mathrm{Y}_{4}-Y c\right)^{2}+\left(\mathrm{Z}_{4}-Z c\right)^{2}\right]^{1 / 2} \tag{4}\\
& R_{c 0}+V s\left(\mathrm{t}_{5}-\mathrm{t}_{1}\right)=\left[\left(\mathrm{X}_{5}-X c\right)^{2}+\left(\mathrm{Y}_{5}-Y c\right)^{2}+\left(\mathrm{Z}_{5}-Z c\right)^{2}\right]^{1 / 2} \tag{5}
\end{align*}
$$

From (2) $\sim(5)$, we have a set of nonlinear equations,

$$
\begin{align*}
& \mathrm{X}_{2} X c+\mathrm{Y}_{2} Y c+\mathrm{Z}_{2} Z c+V s\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) R_{c 0}=\left[\mathrm{X}_{2}^{2}+\mathrm{Y}_{2}^{2}+\mathrm{Z}_{2}^{2}-V s^{2}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)^{2}\right] / 2 \tag{2'}\\
& \mathrm{X}_{3} X c+\mathrm{Y}_{3} Y c+\mathrm{Z}_{3} Z c+V s\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right) R_{c 0}=\left[\mathrm{X}_{3}^{2}+\mathrm{Y}_{3}^{2}+\mathrm{Z}_{3}^{2}-V s^{2}\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)^{2}\right] / 2 \tag{3'}\\
& \mathrm{X}_{4} X c+\mathrm{Y}_{4} Y c+\mathrm{Z}_{4} Z c+V s\left(\mathrm{t}_{4}-\mathrm{t}_{1}\right) R_{c 0}=\left[\mathrm{X}_{4}^{2}+\mathrm{Y}_{4}^{2}+\mathrm{Z}_{4}^{2}-V s^{2}\left(\mathrm{t}_{4}-\mathrm{t}_{1}\right)^{2}\right] / 2 \tag{4’}\\
& \mathrm{X}_{5} X c+\mathrm{Y}_{5} Y c+\mathrm{Z}_{5} Z c+V s\left(\mathrm{t}_{5}-\mathrm{t}_{1}\right) R_{c 0}=\left[\mathrm{X}_{5}^{2}+\mathrm{Y}_{5}^{2}+\mathrm{Z}_{5}^{2}-V s^{2}\left(\mathrm{t}_{5}-\mathrm{t}_{1}\right)^{2}\right] / 2
\end{align*}
$$

Note that if we fix $V s\left(2^{\prime}\right) \sim\left(5^{\prime}\right)$ are linear with respect to $\left(X c, Y c, Z c, R_{c 0}\right)$. Our procedure is, therefore,
(a) Solve $\left(2^{\prime}\right) \sim\left(5^{\prime}\right)$ for a trial value of $V s$, and obtain $\left(X c, Y c, Z c, R_{c 0}\right)$.
(b) Search $V s$ so that $\left[X c^{2}+Y c^{2}+Z c^{2}\right]^{1 / 2}-R_{c 0}=0$ is satisfied.
latitudinal

shock normal direction (phi, theta)

Best fit normals by conventional methods

- GTL mV
- WIND

4-satellite method for plane shocks
$\begin{array}{ll} & A-S-G-W \\ \# & A-S-8-W \\ \triangle & A-S-G-8 \\ \nabla & S-G-8-W \\ \Leftrightarrow & A-G-8-W\end{array}$

5-satellite method (shock normal at the GEOTAIL position)
plane surface model

+ spherical surface model

longitudinal angle shock normal direction

spherical surface model formulation (1)

If the shock surface is spherical 5 satellites needed

Initially we expect that the center is inside of 1 AU and $\mathrm{Vs}>0$, namely the shock has a convex shape expanding in time.

However, we should also take into account of the case where the center is outside of 1 AU and $\mathrm{Vs}<0$, namely the shock has a concave shape shrinking in time.

spherical surface

 model
solar wind

An artificial model: split plane surface model

split plane surface model --- solution

Choose the best splitting time: ... agree with results from the conventional methods (WIND best fit, Geotail MVM)

split plane surface model vs. spherical surface model

4-satellite method
Split plane surface model

5-satellite method spherical surface model

These two results seem to be not inconsistent.

It may not be so crazy to think of a concaved-shape IPS:

Ahead of such a concaved-shape CME, the shock may also have a concave shape locally.

Question to solar radio astronomers:
Are there any peculiar type-II bursts relating to concaved shocks?

5 satellites determine shock parameters if the shock has a plane surface.

$$
\text { velocity } \sim \mathrm{Vs}=\mathrm{Vs}_{0}+a \bullet \mathrm{t}
$$

(a : constant)
direction $\sim \vec{n}$

Physically unacceptable result: IPS was accelerated from
$660 \mathrm{~km} / \mathrm{s}$ (at ACE) to
$1330 \mathrm{~km} / \mathrm{s}$ (at WIND)

Summary and comments

-We have formulated a 5-satellite method in which the shock curvature is derived from shock arrival times at these satellites.
-The method is applied to obtain the curvature radius of the Bastille interplanetary shock in 2000.
This Bastille IPS seems to have had a concave shape locally when it arrived at the near-earth environment.

Application of the 5-satellite method: STEREO + 3 other spacecraft
possible Japan's contribution to STEREO
(in addition to the Solar-B collaboration) around Earth ... GEOTAIL(1992-?), SELENE (2005-) around Mars ... NOZOMI (orbit insertion in Jan 2004)

